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Abstract—Intra prediction in modern video codecs is able
to efficiently reduce spatial redundancy in video frames. With
preceding pixels as context, traditional intra prediction schemes
generate linear predictions based on several predefined directions
(i.e. modes) for the current prediction unit (PU). However, these
modes are relatively simple and are not able to handle complex
textures, which leads to additional bits encoding the residue.
In this paper, we design a convolutional neural network (CNN)
guided spatial recurrent neural network (RNN) to improve the
intra prediction in High-Efficiency Video Coding (HEVC). By
exploring the correlations between pixels, the network learns
to generate prediction signal in a progressive manner. The
progressive model solves the problem of asymmetry in intra
prediction naturally. As the model is designed for global context
modeling, no flags for intra prediction modes selection need to
be encoded. Our proposed intra prediction scheme achieves on
average 1.2% bit-rate saving compared with HEVC.

Index Terms—Video Coding, Intra Prediction, Recurrent Neu-
ral Network, HEVC

I. INTRODUCTION

Intra prediction is a basic component of modern video
codecs (e.g. HEVC). It significantly saves bit-rate by reducing
spatial redundancy. HEVC uses up to 35 modes for directional
intra prediction [1]. In the rate-distortion optimization (RDO)
[2] scheme of HEVC, the codec searches for the best predic-
tion result among the 35 modes including DC, planar and 33
directional modes, and comes out with the most appropriate
mode.

However, the prediction performance of HEVC can be
further improved. Firstly, for the single-line reference scheme
in HEVC, prediction signals are generated in accordance with
the most adjacent line of the available reconstructed blocks. As
a consequence, in low bit-rate configurations, the predictions
tend to be inaccurate. Secondly, directional intra prediction
cannot handle complex texture. To address the drawback
of the single-line reference scheme, a multi-line scheme is
introduced in [3, 4]. By expanding the reference area to more
reference lines, interference of noises produced by aggressive
quantization is reduced. However, these methods only expand
the reference area, the structural correlations of pixels in the
reference area are not explored. Thus, the improvement of the
coding performance is limited.

Recently deep learning methods emerge for image and video
compression and processing tasks. Involving deep models in
video coding has been initially studied in recent years [5–8].
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Deep neural networks can automatically learn the end-to-end
mapping of inputs and outputs. It can also be easily accelerated
using large-scale parallel programming. In [9], CNN has been
utilized for mode decision as it has a strong potential of
capturing global feature from image data. In [7, 10] fully-
connected (FC) network and CNN are exploited directly in
intra prediction. By training a network to build a mapping from
the reference samples to the prediction signal, FC networks
and CNN show improvement in rate-distortion performance
compared with HEVC.

However, previously proposed deep-network-based intra
prediction methods have drawbacks. For CNN based methods,
the network is not capable of handling asymmetric image
completion tasks, as the whole input block is convolved
unconditionally. Large areas with no texture information inter-
ferers the extraction of spatial features. For FC networks, the
correlations among pixels in the reference area are neglected.
As a consequence, it is hard for FC networks to generate
predictions for sharp edges.

To address the deficiencies of the previous model discussed
above, in this paper, we propose a CNN guided spatial
recurrent neural network (RNN) to improve the intra prediction
in HEVC. By exploring the correlations between pixels, the
network learns to generate prediction signal in a progressive
manner. As no information from the unknown regions is used
before the prediction process, the model solves the problem
of asymmetry naturally. This network achieves promising
performance gain compared with HEVC.

The rest of the paper is organized as follows. In Section
II, we analyze the different reference scheme for traditional
and deep learning based intra prediction. In Section III, the
architecture of spatial RNN for pixel modeling is explained.
In Section IV, we demonstrate the experimental results of our
network. In Section V we draw a conclusion.

II. BLOCKING REFERENCE SCHEME

HEVC uses extended reference blocks and richer di-
rectional prediction modes compared with its predecessor
AVC/H.264 [11] to provide better intra prediction accuracy
and enhance overall coding performance. In HEVC intra
prediction, a PU with size M × M will be provided with
4M + 1 reference samples, as is shown in Fig. 1. Although
the reference area is expanded, only the adjacent lines of the
available coded blocks are used as the reference. Thus, noise
in the original frame or generated during the quantization
results in false textures in the reference line. The impact of
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Fig. 1. The Γ-like reference context in HEVC. Reconstructed pixels from
the left below and the right above will be included in the reference samples.

the noise grows as the quantization parameter increases. One
way to address this issue is to expand the area of reference
samples. In a multi-line reference scheme, multiple preceding
lines are jointly exploited for reference of predicton, as is
shown in Fig. 2 (a). However, the expanding reference area
brings additional complexity to directional intra prediction.
The improvement of the expansion reaches a limit for such
prediction methods.

To further utilized the preceding pixels, our proposed
method adopts a block-level reference scheme, where at most
five available encoded blocks can be utilized, as shown in
Fig. 2 (b). As the proposed method is able to handle spatial
correlations, the reference pixels can be viewed as patches
other than lines during the generation of predictions.

(a) (b)

Fig. 2. Different reference scheme to enable robust referencing and reduce the
influence of noise. (a) Multi-line reference scheme. (b) Block-Level reference
scheme.

III. SPATIAL RNN FOR INTRA PREDICTION

A challenge for designing a neural network for intra pre-
diction lies in the asymmetry of the inputs. In this problem,
the reference samples are distributed in the blocks on the left
and the above. A large area of unknown pixels on the right
below of the context provides no information for prediction
process. This asymmetric property causes two main problems.
First, the network needs to be deep to provide a large enough
receptive field for each neuron. Such a deep network is hard
to train. Second, the area with no information is convolved

unconditionally. As illustrated in Fig. 3, the receptive field
for a right below target pixel will be largely covered by the
unknown area. It interferes the training of filters and results
in inaccurate predictions.

One way to deal with the problem is to use FC neural
network. In an FC network, the inputs are connected to every
input dimension with densely connected neurons, allowing the
network to do a global optimization. However, local features
of spatially distributed pixels are not effectively extracted in
an FC network. It it hard for such a network to generate sharp
edges.

Known pixels

Inferred mean pixels

Receptive field

Fig. 3. Receptive field of a right-below point can be largely covered by filled
data. Points in the right-bottom area are generally mapped from previously
filled singals.

To address the issues mentioned above, we propose to
exploit spatial RNN for intra prediction. The architecture of
the network is inspired by [12]. As is illustrated in Fig. 4, the
network consists of two parts. We first map the input pixels
to feature space with convolutional layers. As these layers are
shallow and the sizes of the kernels are relatively small, global
interference of the large missing area is not significant.

Before the prediction, the feature maps are re-sampled to
several scales, making the network compatible for variable
content scale in videos. After the concatenation of each scales,
the network progressively generates predictions for the feature
maps. We define the feature map as X. It is viewed as a
stack of horizontal planes Xh = {Xh

0 ,X
h
1 , . . . ,X

h
n−1} or a

stack of vertical planes Xv = {Xv
0,X

v
1, . . . ,X

v
n−1}, where

each element in the stack represents a feature vector. We
take the vertical generation process as an example. Under
the assumption that the distributions of local features are
continuous, this process is formulated as,

X̃v
i = F

(
Xv

i ,X
v
i−1, θv

)
, (1)

where X̃v
i is the predicted feature vector for the ith plane

and F is the function to generate the prediction signals from
previous observations together with the current input feature
vector.

Our network automatically learns the mapping function F
using spatial RNN with Gated Recurrent Units (GRU). A
traditional GRU can be formulated as follows,

zt =σ(W
zxt +Uzht−1),

rt =σ(W
rxt +Urht−1),

ht =zt � ht−1 + (1− zt)�
σ(Wxt +U(rt � ht−1) + b),

(2)

where each W and each U are parameters. ht is the response
of the tth stage. In traditional GRU, the parameters are learned
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Fig. 4. Architecture of the whole network. Input blocks are handled in a multi-scale scheme using max pooling and bilinear interpolation. The data path on
the above is the guiding CNN to extract high-level feature to provide guidance for the training of the spatial RNN on the bottom.

during training and fixed after the training ends. Differently,
in our proposed model, we exploit a guiding CNN to generate
the parameters. The original formulation in Eq. (1) is now
redefined as follows,

X̃v
i = F

(
Xv

i ,X
v
i−1, φ(X, θ

′)v
)
, (3)

where X is the prediction context. Function φ is approximated
using a trainable CNN with parameters θ′.

Since the convolutional part does not produce any target
pixel for the prediction signals, the problem of asymmetry
can be neglected. Besides, as the CNN is used only for
feature extraction rather than pixel level mapping, a shallower
structure is used to reduce the training difficulty.

A. Integration with the Codec

The proposed network is integrated into HEVC with RDO.
For cases where the original intra prediction in HEVC can
perform well enough, the RDO process chooses to predict
the block with the original HEVC scheme. For some hard
cases where HEVC provides poor rate-distortion cost results,
the network will be chosen. One additional flag is needed for
each PU to save whether to use the deep learning model or
the original HEVC. If the deep mode is chosen, no flag for
prediction direction is encoded.

We explore the intra prediction for 8 × 8 blocks. For each
coding unit of size 16 × 16, which includes 4 PUs, the full
context is only available for the first PU and fewer reference
blocks are available for the rest. To address this problem,
two models are trained separately for these two conditions.
The top-left PU is predicted by a full-context model which is
trained using full context. The rest is predicted by a 3-block
model where the blocks on the above, left and left-above are
used as training context.

Rather than trained on original frames or images, the model
is trained using reconstructed data. This is to prevent a possible
distribution difference between the reconstructed data and the
original image signals. As when decoding, only reconstructed

TABLE I
SUMMARIZED COMPARISON WITH THE MODEL IN [7].

Sequence
BD-Rate

Ours Li et al. [7]

Class A -0.8% -1.4%

Class B -1.5% -1.3%

Class C -1.0% -0.5%

Class D -0.9% -0.5%

Class E -1.7% -0.9%

Average -1.2% -0.9%

blocks are available. When the frames are encoded with quan-
tization, an additional noise will be added to the reconstructed
signals.

IV. EXPERIMENTAL RESULTS

A. Training Settings

As video frames are much alike in one sequence, they
are not ideal training data for intra prediction models, which
embraces diversity. The training data is generated from high-
resolution images provided in [13]. These images have not
been lossily compressed, which makes them artifacts free. To
make the model adapt to various resolution, we cropped and
downsampled the images to 3 scales, namely 1792 × 1024,
1344 × 768, and 896 × 512. The images are encoded using
HEVC with Quantization Parameter (QP) set to 22, 27, 32, 37
respectively and we use the reconstructed blocks in the decod-
ing process to form the training pairs. We randomly sample
about 3,000,000 samples for the training.

Training the model using pairs with high QP settings can
enhance the ability for models to overcome the influence of the
quantization noise, but these training pairs are less expressive
in terms of the original mapping from the reference signals
to the predicted signals. Our mixed training set balances the
robustness and expressiveness of the spatial RNN model. In
this way, the model can be trained with robustness to noise
without harming its expressiveness for spatial mapping. We



TABLE II
COMPARISON WITH HEVC, EVALUATED IN BD-RATE.

Class Sequence
BD-Rate

Y U V

Class A

Traffic -1.3% -1.0% -0.9%

PeopleOnStreet -1.1% -0.8% -0.8%

NebutaFestival -0.2% 0.0% 0.0%

SteamLocomotiveTrain -0.6% 0.0% 0.0%

Class A Average -0.8% -0.5% -0.4%

Class B

Kimono -2.8% -2.2% -1.7%

ParkScene -1.7% -0.3% -0.2%

Cactus -1.2% -0.5% -0.7%

BasketballDrive -1.0% -0.4% -1.1%

BQTerrace -1.0% 0.6% -0.7%

Class B Average -1.5% -0.6% -0.9%

Class C

BasketballDrill -1.0% -0.2% 0.7%

BQMall -0.8% -0.2% -0.6%

PartyScene -1.0% -0.4% -0.7%

RaceHorses -1.1% -0.6% -1.2%

Class C Average -1.0% -0.4% -0.5%

Class D

BasketballPass -0.8% -0.3% 0.7%

BQSquare -0.6% -1.8% -0.1%

BlowingBubbles -1.0% -0.7% 0.0%

RaceHorses -1.1% -0.9% -0.6%

Class D Average -0.9% -0.9% 0.0%

Class E

Johnney -2.2% -0.2% -1.6%

FourPeople -1.5% -0.8% -0.1%

KristenAndSara -1.3% -0.6% -1.0%

Class E Average -1.7% -0.5% -0.9%

Average -1.2% -0.6% -0.5%

use the mean square error (MSE) objective function to jointly
train the spatial RNN and the guiding CNN. The network
is trained using Stochastic Gradient Descent (SGD) with an
initial learning rate 0.01. The learning rate is set to decay
exponentially with factor 0.7 for every 10 epochs and the
whole training last for 50 epochs.

B. Performance Evaluation

We implement the network into HEVC Test Model (HM)
16.15. The intra main configuration in the common test
conditions (CTC) [14] is used. The anchor and proposed
method only allow CU size of 16 × 16 and forced to do a
split. That is, each PU is restricted to have the size of 8× 8.
The Most-Possible-Mode (MPM) is disabled in the test model.
The QP is set to [22, 27, 32, 37]. When testing on videos,
encoders with different QPs share the same models. The rate-
distortion performance is measured using BD-Rate [15]. As
intra prediction handle each frame separately, a comparison
can be made on a relatively small number of frames. For each
video sequence, the first 5 frames are tested. The result for
each testing sequence is listed in table II. We also compare
our result with the work in [7] which utilize an FC network
for intra prediction. The result is shown in table I.

It can seem in Table II and Table I that, our proposed
model brings better rate-distortion performance than HEVC,
especially for Class E. The reason for this is that this scale
mostly matches our training set distribution and is partially
due to the video sequences in Class E has large smooth
areas and our network-based intra predictor can further save
bits. For videos with different resolution, our model can also
provide a robust and satisfactory result and brings bitrate
saving compared with previous methods.

V. CONCLUSION

In this paper, we propose an optimized intra prediction
method for video coding. We integrate the spatial RNN and
guiding CNN into HEVC and enhance the intra predictor. The
RNN architecture solves the problem of asymmetry which
may challenge other network structure in intra prediction task.
Experimental results show improvement in rate-distortion per-
formance compared with HEVC and previous deep network-
based approaches.
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